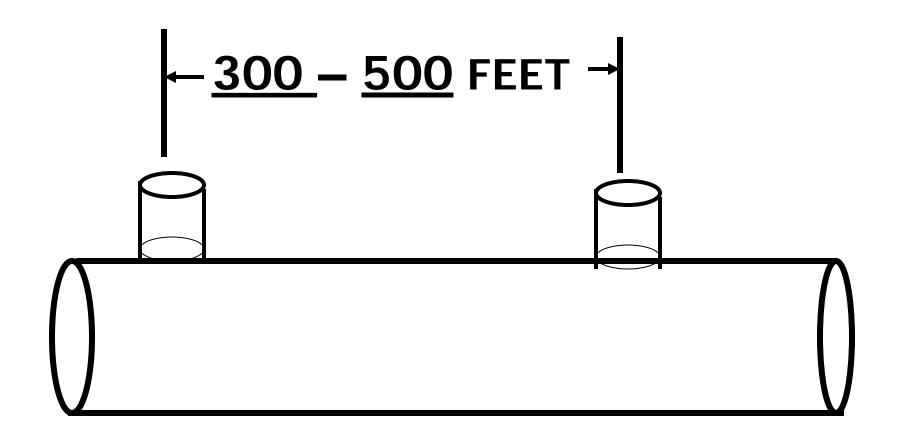
OVERVIEW OF WASTEWATER TREATMENT

- GENERATION
- COLLECTION/TRANSPORT
- TREATMENT
- DISPOSAL

GENERATION OF WASTES

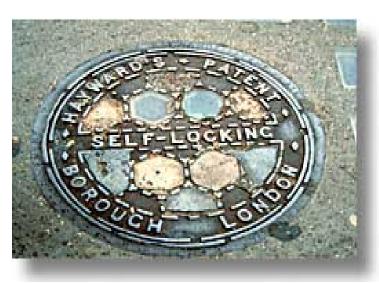
•IN THE USA, AVERAGE PERSON
GENERATES 70 to 100 GALLONS OF
WASTEWATER per DAY

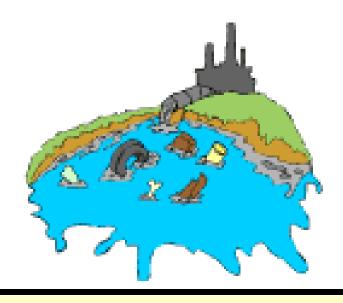

•AVERAGE PERSON GENERATES APPROX 56 gm BOD per DAY or 0.12 lbs BOD/PERSON/DAY

TO COLLECT AND TRANSPORT WASTEWATER FOR TREATMENT WE USE:

- **SANITARY** SEWERS
- STORM SEWERS
- COMBINED SEWERS

• IN GENERAL, SEWERS ARE DESIGNED TO FLOW BY GRAVITY


 DESIGN FLOW IS 2 FEET per SECOND (fps) to prevent settling and septic conditions


MANHOLE PLACEMENT ON SEWERS

WHY ARE MANHOLE COVERS ROUND?

IF UNTREATED WASTE IS DISCHARGED INTO A RIVER...

- SOLIDS SETTLE OUT
- DEMAND FOR O₂
- HOPEFULLY, <u>RECOVERY</u>

WASTEWATER
TREATMENT TAKES
WHAT WOULD
HAPPEN IN MILES
OF RIVER...

...AND DUPLICATES IT IN A FEW ACRES OF TANKS AND EQUIPMENT

IN THE WASTEWATER TREATMENT PLANT, THE STAGES OF TREATMENT ARE:

- 1. PRELIMINARY TREATMENT
- 2. PRIMARY TREATMENT
- 3. SECONDARY TREATMENT
- 4. SOMETIMES...TERTIARY

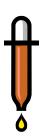
PRELIMINARY TREATMENT

SEWAGE ----

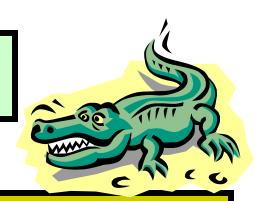
HEADWORKS

- SCREENING
- GRIT REMOVAL
- SHREDDING
- FLOW MEASUREMENT

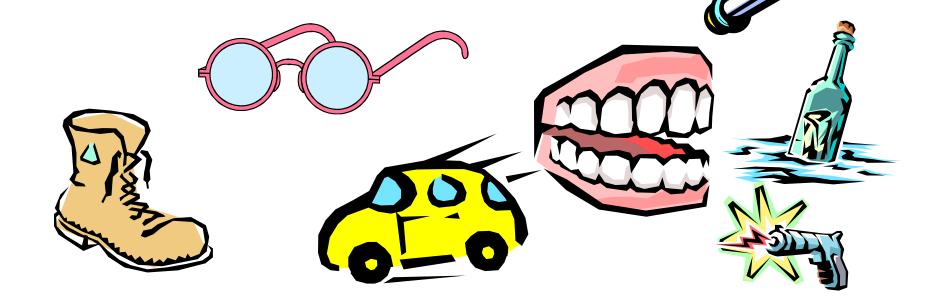
PRELIMINARY TREATMENT

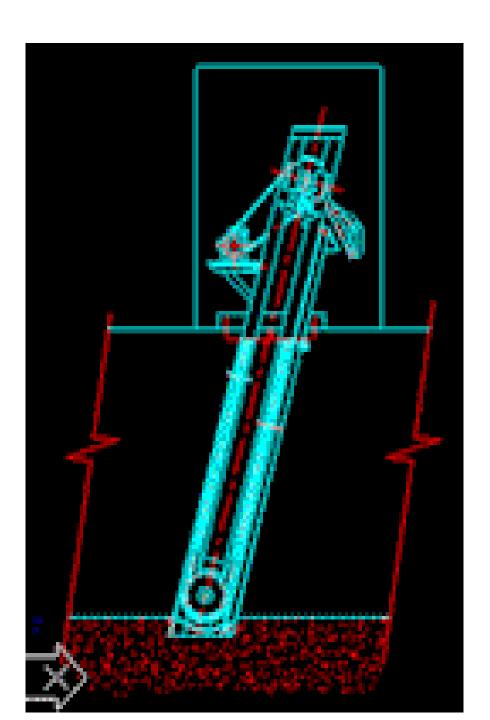

SEWAGE — HEADWORKS

- <u>SCREENING</u>
- SHREDDING
- GRIT REMOVAL
- <u>F</u>LOW MEASUREMENT


OVERALL PURPOSE OF THE HEADWORKS IS ...???

•TO PROTECT THE EQUIPMENT IN THE REST OF THE PLANT and...


TO MONITOR THE FLOW



SCREENING

PURPOSE: TO <u>REMOVE</u> LARGE, NON-BIODEGRADABLE ITEM FROM SEWAGE SUCH AS.

BAR SCREENS: SPACING = 3/8" to 2"

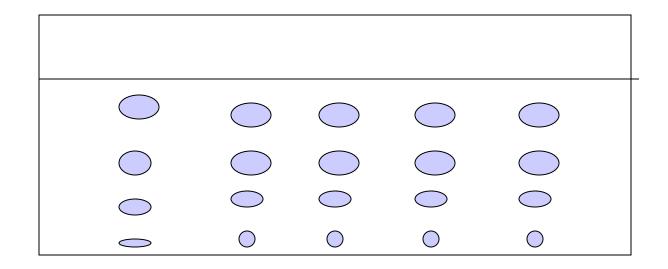
GRIT REMOVAL

PURPOSE: TO PROTECT THE MECHANICAL EQUIPMENT IN THE REST OF THE PLANT

WHAT'S GRIT? <u>SAND</u>, GRAVEL, EGG SHELLS, COFFEE GROUNDS, SEEDS, etc.

HOW IS GRIT REMOVED?

Sewer


VELOCITY = 2 ft/sec

Grit Chamber

VELOCITY = 1.5 ft/sec

ONCE SETTLED, THE GRIT CAN BE REMOVED AND <u>DISPOSED</u> OF

SOME GRIT CHAMBERS HAVE AIR DIFFUSERS TO REMOVE ATTACHED ORGANICS AND "FRESHEN" THE SEWAGE

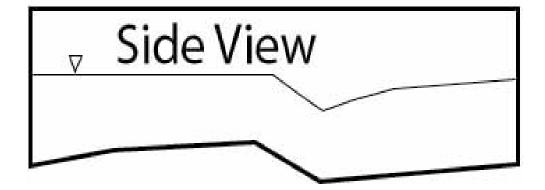
SHREDDING

PURPOSE: TO REDUCE IN SIZE, CUT UP AND SHRED "STUFF" NOT REMOVED ON THE SCREENS. (TO ABOUT 1/4")

SEVERAL BRANDS: BARMINUTOR, COMMINUTOR, DIMMINUTOR, MACERATOR

FLOW MEASUREMENT

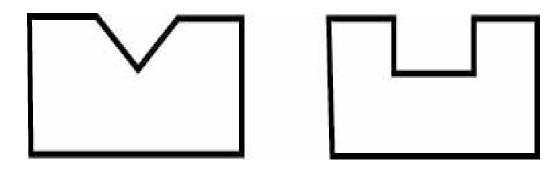
PURPOSE: TO LET YOU KNOW HOW MUCH WASTE WATER YOU ARE GETTING...


SO, YOU CAN ADJUST <u>PUMP</u>, AERATION, AND DISINFECTION RATES, SLUDGE WITHDRAWAL,

PARSHALL FLUME

PARSHALL FLUME

• MOST POPULAR DEVICE IS THE PARSHALL <u>FLUME</u>.


 DEVELOPED IN 1922 TO MEASURE IRRIGATION FLOW

•WORKS BY CONSTRICTING
THE FLOW AND MEASURING
THE DEPT OF WATER

• WORKS WELL FOR SEWAGE BECAUSE NO SHARP <u>EDGES</u>

OTHER FLOW MEASURING DEVICES

WEIRS

V-NOTCH

RECTANGULAR

PROBLEM WITH WEIRS IS SEWAGE WILL BEGIN SETTLING

PRIMARY TREATMENT


• A "PHYSICAL" PROCESS

- FLOW IS SLOWED DOWN TO ALLOW <u>SETTLING</u>
- FLOATABLE SOLIDS CAN BE SKIMMED OFF

PRIMARY TREATMENT (con't)

• SAME PRINCIPLE AS THE <u>IMHOFF</u> CONE

•THE SETTLING TANKS ARE CALLED SEDIMENTATION TANKS (or BASINS) or CLARIFIERS

MANY OLDER CLARIFIERS ARE RECTANGULAR IN SHAPE. MOST NEWER ONES ARE <u>CIRCULAR</u>

DETENTION TIME

• THE <u>TIME</u> FOR A GIVEN FLOW TO PASS THROUGH A TANK

EXAMPLE: IF THE FLOW IS 450 gal/min AND THE TANK SIZE IS 40,000 gal, the DETENTION TIME IS

40,000 gal/450 gal/min = 89 min (1.5 hours)

DETENTION TIME con't

•PRIMARY CLARIFIERS ARE DESIGNED FOR 1.5 – 2 HOURS DETENTION TIME

THIS PROVIDES:

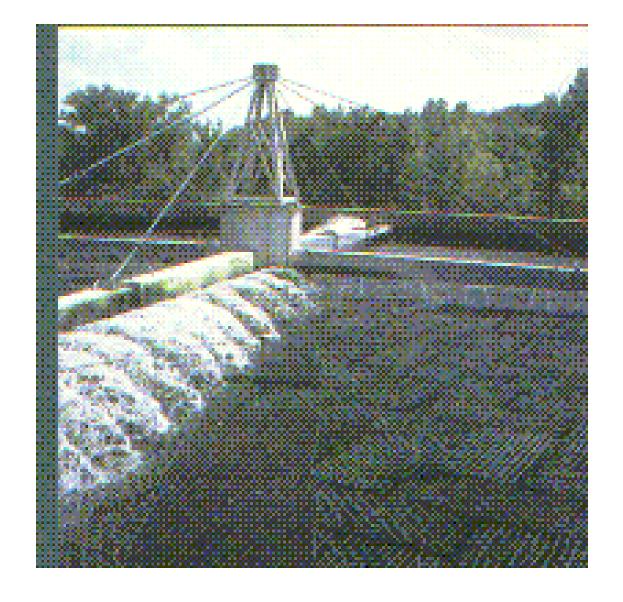
- 60% REMOVAL of SUSPENDED SOLIDS
 - 30% REMOVAL OF BOD

DETENTION TIME con't

CALCULATED DETENTION TIME IS THEORETICAL. IN PRACTICE, SOME FLOW COMES THRU RIGHT AWAY—CALLED "SHORT-CIRCUITING"

OPERATORS MAY HAVE TO DETERMINE THE ACTUAL "DT" USING DYES

SECONDARY TREATMENT


• A "BIOLOGICAL" PROCESS
WHERE LIVING ORGANISMS
"MUNCH" ON THE ORGANICS IN
THE DISSOLVED AND NONSETTLEABLE SOLIDS

MOST COMMON PROCESS ARE:

- TRICKLING FILTERS
- ACTIVATED SLUDGE

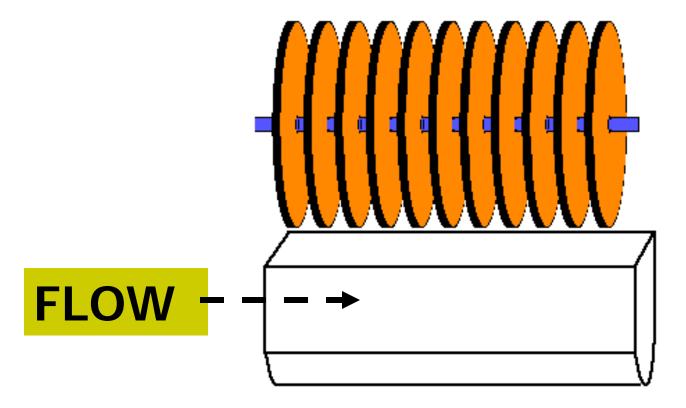
TRICKLING FILTERS

- NOT REALLY A FILTER
- EFFLUENT FROM THE PRIMARY CLARIFIER IS SPRINKLED OVER A BED OF 1.5-5 inch <u>ROCKS</u> (or plastic)
 - <u>AEROBIC</u> ORGANISMS ATTACH TO THE ROCKS. AIR IS AVAILABLE BETWEEN THE ROCKS.

A TRICKLING FILTER

TRICKLING FILTERS (con't)

• WHEN BIOLOGICAL GROWTH ON THE ROCK GETS TOO THICK, IT BREAKS OFF—CALLED <u>SLOUGHING</u>


• THE SLOUGHED MATERIAL IS CALLED "HUMUS" AND REQUIRES A SECONDARY CLARIFIER

• REMOVES <u>70</u> - <u>85</u>% OF THE BOD AND SUSPENDED SOLIDS

ROTATING BIOLOGICAL CONTACTORS

CALLED "RBCs"

• SPECIAL DISCS ARE ROTATED THRU THE SEWAGE AND BIOLOGICAL GROWTH DEVELOPS ON THE DISCS (just like on the rocks)

ROTATING BIOLOGICAL CONTACTOR

ACTIVATED SLUDGE

• CONSISTS OF AN <u>AERATION</u>
TANK FOLLOWING THE PRIMARY
CLARIFIER

- O2 IS SUPPLIED BY DIFFUSERS OR MECHANICAL DEVICES
- DETENTION TIME OF <u>4</u> <u>8</u> hours PRODUCE RAPID AEROBIC GROWTH

ACTIVATED SLUDGE (con't)

• EFFLUENT FROM THE AERATION TANK IS CALLED "MIXED LIQUOR"

• THE ORGANISMS THAT SETTLE IN THE SECONDARY CLARIFIER ARE CALLED "ACTIVATED SLUDGE"

• 90 - 95% REMOVAL OF BOD & SS

SECONDARY CLARIFIERS

• <u>SOLIDS</u> FROM TRICKLING FILTERS, RBCs, AND ACTIVATED SLUDGE MUST BE REMOVED BEFORE SEWAGE IS DISCHARGED

• SLUDGE (or BIOSOLIDS) ARE USUALLY RETURNED TO THE PRIMARY CLARIFIER OR THE DIGESTER.

SLUDGE (BIO-SOLIDS) HANDLING AND DISPOSAL

 SOLIDS SENT TO A LARGE SEALED TANK CALLED A <u>DIGESTER</u>

• AFTER 30 DAYS UNDER ANAEROBIC CONDITIONS, SLUDGE CAN BE DEWATERED, BURNED, OR USED AS A SOIL CONDITIONER

SLUDGE (con't)

• 2 MAJOR TYPES OF BACTERIA IN AN ANAEROBIC DIGESTER

1. <u>ACID</u> FORMERS—PRODUCE ORGANIC ACIDS AND CO₂

2. GAS FORMERS—BREAK DOWN THE ORGANIC ACIDS TO PRODUCE METHANE (CH₄)

SLUDGE (con't)

• THE <u>CH</u>₄ GAS HEATS THE DIGESTER (95°F) & RUNS ENGINES

• THE LIQUID ABOVE THE SETTLED SOLIDS IS CALLED "SUPERNATANT"

• DIGESTERS CAN BE VERY DANGEROUS IF <u>AIR</u> BECOMES MIXED WITH THE METHANE

SLUDGE (con't)

SOME ACTIVATED SLUDGE PLANTS USE <u>AEROBIC</u> DIGESTERS

• THESE ARE OPEN TANKS WHERE COMPRESSED AIR IS BLOWN THRU THE SLUDGE

WASTE TREATMENT PONDS

ALSO CALLED: <u>STABILIZATION</u>
PONDS, OXIDATION PONDS,
BIO-OXIDATION PONDS,
SEWAGE LAGOONS...

• AEROBIC PONDS RANGE FROM 3 – 6 FEET DEEP, ANAEROBIC, 8-12 FEET DEEP

PONDS (con't)

• PONDS THAT ARE

<u>AEROBIC</u> ON TOP AND

<u>ANAEROBIC</u> ON BOTTOM

ARE CALLED "FACULTATIVE

PONDS" (MOST COMMON)

HOW DO PONDS WORK?

- WASTEWATER ENTERS THE POND
 - SETTLEABLE SOLIDS DECOMPOSE AND USE O₂
- ORGANISMS USE THE OXYGEN AND PRODUCE CO₂ WHICH CAUSES ALGAE TO FLOURISH

HOW DO PONDS WORK?

• THROUGH PHOTOSYNTHESIS
THE ALGAE UTILIZE CO₂ TO
PRODUCE OXYGEN (O₂)

• ORGANISMS USE THE OXYGEN TO STABILIZE THE WASTEWATER

PONDS (con't)

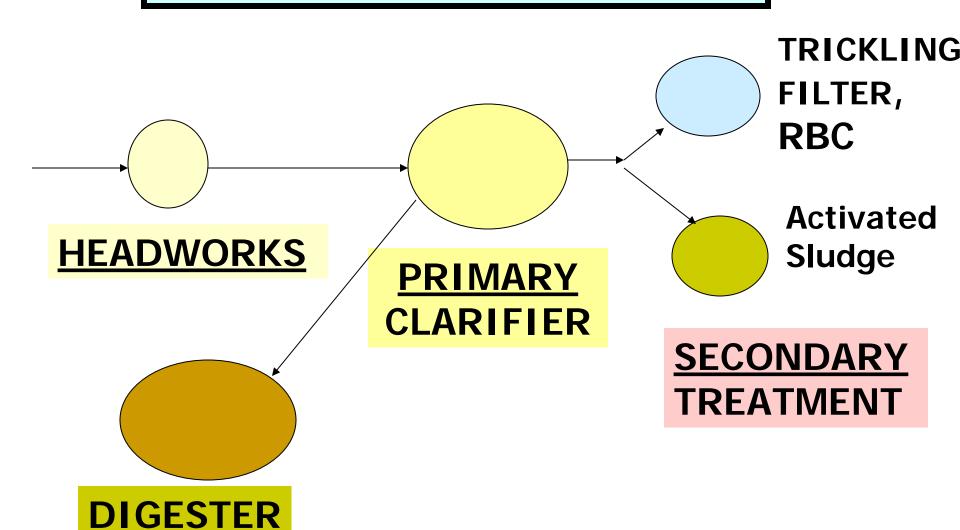
- •PONDS CAN BE OPERATED IN <u>SERIES</u> OR IN <u>PARALLEL</u>
 - HAVE A DETENTION TIME
 OF 30 DAYS OR MORE

• "OXIDATION PONDS" FOLLOW PRIMARY TREATMENT; "WASTE STABILIZATION PONDS" RECEIVE UNTREATED WASTE

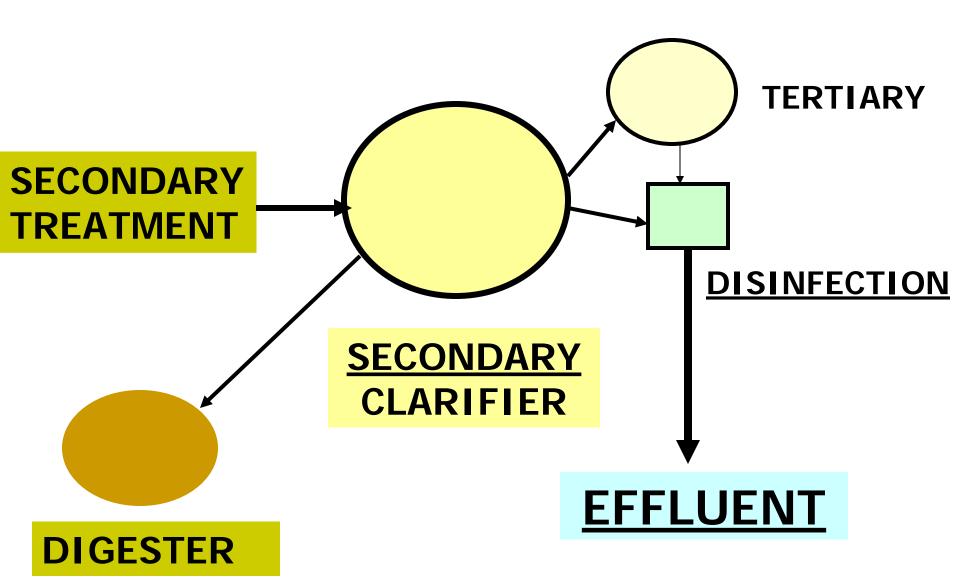
DISINFECTION

 MUST KILL REMAINING PATHOGENS

• CHLORINE GAS (CI₂) IS THE MOST USED DISINFECTANT


• MUST HAVE 20-30 MINUTES OF "CONTACT TIME"

DISINFECTION (con't)


- SOME EFFLUENTS MUST BE "DECHLORINATED" WITH SULFUR DIOXIDE (SO₂)
- CHLORINE CAN BE DANGEROUS

• SOME PLANTS USE <u>ULTRAVIOLET</u> LIGHT AND OTHER DISINFECTANTS

TREATMENT PLANT

TREATMENT PLANT (con't)

